
Assessment of MERRA-2 Land Surface Energy Flux Estimates1

Clara S. Draper ∗2

USRA/GESTAR and NASA Global Modeling and Assimilation Office, Greenbelt, MD, USA.3

Now at CIRES NOAA/ESRL, Physical Sciences Division, Boulder, CO.4

Rolf H. Reichle5

NASA Global Modeling and Assimilation Office,Greenbelt, MD, USA.6

Randal D. Koster7

NASA Global Modeling and Assimilation Office,Greenbelt, MD, USA.8

∗Corresponding author address: Clara Draper, NOAA ESRL, Physical Sciences Division, 325

Broadway, Boulder, CO, USA.

9

10

E-mail: clara.draper@noaa.gov11

Generated using v4.3.2 of the AMS LATEX template 1

https://ntrs.nasa.gov/search.jsp?R=20170011623 2020-05-09T16:29:29+00:00Z



ABSTRACT

2



In the Modern-Era Retrospective analysis for Research and Applications,

version 2 (MERRA-2) system the land is forced by replacing the model-

generated precipitation with observed precipitation before it reaches the sur-

face. This approach is motivated by the expectation that the resultant improve-

ments in soil moisture will lead to improved land surface latent heating (LH).

Here we assess aspects of the MERRA-2 land surface energy budget and 2 m

air temperatures (T 2m). For global land annual averages, MERRA-2 appears

to overestimate the LH (by 5 Wm−2 ), the sensible heating (by 6 Wm−2),

and the downwelling shortwave radiation (by 14 Wm−2), while underestimat-

ing the downwelling and upwelling (absolute) longwave radiation (by 10-15

Wm−2 each). These results differ only slightly from those for NASA’s previ-

ous reanalysis, MERRA. Comparison to various gridded reference data sets

over Boreal summer (June-July-August) suggests that MERRA-2 has particu-

larly large positive biases (>20 Wm−2) where LH is energy-limited, and that

these biases are associated with evaporative fraction biases rather than radi-

ation biases. For time series of monthly means during Boreal summer, the

globally averaged anomaly correlations (Ranom) with reference data were im-

proved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs. GLEAM

data) and the daily maximum T 2m (from 0.69 to 0.75 vs. CRU data). In re-

gions where T 2m is particularly sensitive to the precipitation corrections (in-

cluding the central US, the Sahel, and parts of south Asia), the changes in

the T 2m Ranom are relatively large, suggesting that the observed precipitation

influenced the T 2m performance.
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1. Introduction35

The NASA Global Modeling and Assimilation Office recently released the Modern-Era Ret-36

rospective analysis for Research and Applications, version 2 (MERRA-2; Gelaro and Coauthors37

(2017)). This new global reanalysis product replaces and extends the original MERRA atmo-38

spheric reanalysis (Rienecker et al. 2011), as well as the MERRA-Land reanalysis (Reichle et al.39

2011). In addition to several other major advances, MERRA-2 uses observed precipitation in place40

of model-generated precipitation at the land surface during the atmospheric model integration. The41

use of observed precipitation in MERRA-2 was refined from the approach used for MERRA-Land42

(Reichle et al. 2017b), which was an offline (land only) replay of MERRA forced by atmospheric43

fields from MERRA but with the precipitation forcing corrected using gauge-based observations.44

The motivation for using observed precipitation in reanalyses is that precipitation is the main45

driver of soil moisture, which in turn controls the partitioning of incident surface radiation between46

latent heat (LH) and sensible heat (SH) fluxes back to the atmosphere. Reichle et al. (2017a)47

show that both MERRA-2 and MERRA-Land have improved upon the land surface hydrology of48

MERRA, showing better agreement with independent observational time series of soil moisture,49

terrestrial water storage, stream flow, and snow amount. Here, we extend this work, by evaluating50

the MERRA-2 surface energy budget and 2 m temperatures (T 2m) over land. In particular, we51

focus on whether the improved hydrology in both the (offline) MERRA-Land and the (coupled52

land/atmosphere) MERRA-2 data sets translates into the expected improvements to the monthly53

mean LH and SH. We also expand previous work by evaluating the reanalyses land surface output54

globally, rather than focusing on locations with high quality ground-based observations.55

We start by comparing the long-term annual global energy budget over land from MERRA-2,56

MERRA-Land, and MERRA to state of the art estimates from the literature. These literature57
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estimates, from Trenberth et al. (2009), Wild et al. (2015), and the NASA Energy and Water Cycle58

Studies program (NEWS,NSIT (2007); L’Ecuyer et al. (2015)) were each produced by carefully59

combining multiple input data sets with global energy balance constraints. Taken together they60

represent our best understanding of the long-term annual mean energy budget over land.61

Next, we consider global maps of the performance of the land surface turbulent heat fluxes from62

each reanalyses, as a step towards linking differences in performance to the dominant local physi-63

cal processes and to the potential improvements obtained from the use of the observed precipitation64

in MERRA-2. We focus on the Boreal summer (June-July-August; JJA), since land/atmosphere65

coupling is strongest and surface turbulent heat fluxes are most active in the summer.66

Unfortunately, there are no standard global gridded reference data sets against which the reanal-67

ysis LH and SH can be evaluated. Several recent efforts have compared global LH estimates from68

different combinations of reanalyses, offline land surface models, and diagnostic methods. Most69

estimates generally agree on the regional patterns and local seasonal cycle of LH, although there70

is considerable disagreement in the absolute values and temporal behavior across different flux71

estimates (Jiménez et al. 2011; Mueller et al. 2011; Miralles et al. 2011). Additionally, uncer-72

tainty in the basic model structure is the largest source of disagreement (Schlosser and Gao 2010;73

Mueller et al. 2013). While ground-based observations are available from tower-mounted eddy74

covariance sensors (e.g., Baldocchi and Coauthors (2001)), the number of towers (in the 100’s)75

is well below the sampling needed for global estimation (and their locations are not designed to76

sample globally-representative land cover types). Additionally, the measurements themselves have77

considerable uncertainty and limited spatial representativeness (up to 1 km).78

In the absence of a standard reference, we compare the JJA reanalysis turbulent heat flux esti-79

mates to two different gridded reference data sets: Global Land surface Evaporation: the Ams-80

terdam Methodology (GLEAM) (Miralles et al. 2011; Martens et al. 2017) for LH, and Fluxnet-81
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Model Tree Ensembles (MTE) (Jung et al. 2010) for LH and SH. These data sets were selected for82

several reasons: i) they are amongst the state of the art, ii) they are available globally for multi-83

decadal time periods, iii) they are independent of each other, and iv) they rely on very different84

estimation methodologies (water balance modeling for GLEAM, and upscaling of tower measure-85

ments for MTE). Since neither GLEAM nor MTE represents direct observations of the turbulent86

heat fluxes, we also compare each reanalysis to tower-based eddy covariance observations from87

the Fluxnet-2015 data set (Fluxnet 2015). To determine the potential contribution of radiation bi-88

ases to regional LH and SH biases, we also compare the reanalyses surface radiation fields for JJA89

against gridded observations from the Clouds and the Earth’s Radiant Energy System (CERES)90

and Energy Balanced and Filled (EBAF) data set (Kato et al. 2013).91

Finally, to test whether the changes in the surface energy budget from MERRA to MERRA-92

2 have affected the atmospheric boundary layer, we also evaluate the JJA monthly mean daily93

minimum and maximum T 2m against observations from the Climatic Research Unit (CRU) at the94

University of East Anglia (Harris et al. 2014). Improvements in MERRA-2 due to the use of95

observed precipitation cannot be isolated from the many other advances distinguishing MERRA-96

2 from MERRA. Consequently, we establish whether the improvements in the surface turbulent97

fluxes and T 2m are at least consistent with the expected improvements from the use of observed98

precipitation, by cross-referencing the evaluation results against the regional sensitivity to precip-99

itation and/or soil moisture.100

This paper is organized as follows. Section 2 summarizes the reanalysis and reference data sets101

used, and Section 3 presents the results, including evaluation of the i) reanalyses annual global102

land energy budget averages, ii) the spatially distributed mean JJA energy budget and T 2m, and ii)103

the temporal behavior of the JJA turbulent heat fluxes and T 2m. We also identify regions of sensi-104
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tivity to the observed precipitation forcing in MERRA-2, for cross-reference against the evaluation105

results. Our findings are summarized in Section 4.106

2. Methodology and data107

a. The reanalyses108

The coverage and resolution of each reanalysis is summarized in Table 1, with further details109

below. MERRA (Rienecker et al. 2011) and MERRA-2 (Gelaro and Coauthors 2017) are atmo-110

spheric reanalyses produced with the NASA Goddard Earth Observing System Version 5 (GEOS-111

5) modeling and data assimilation system, and were designed to provide historical analyses of the112

hydrological cycle across a broad range of climate time scales. To address shortcomings in the113

MERRA land surface hydrology, MERRA-Land (Reichle et al. 2011) was released as an offline114

(land only) replay of MERRA, with the model-generated precipitation corrected using rain-gauge115

observations and with minor, but important, model parameter changes. MERRA-2 features sev-116

eral major advances from MERRA, including an updated atmospheric general circulation model,117

an updated atmospheric assimilation system, an interactive aerosol scheme, and the use of ob-118

served precipitation at the land surface (and to compute wet aerosol deposition). In addition to119

the land model updates from MERRA-Land, MERRA-2 includes several more updates relevant to120

the land, as outlined in Reichle et al. (2017a). Most notably, the surface turbulence scheme was121

revised, generally resulting in enhanced SH over land (Molod et al. 2015).122

The method used to apply the observed precipitation at the land surface in MERRA-2 was refined123

from that used in MERRA-Land (Reichle and Liu 2014; Reichle et al. 2017b). In MERRA-Land124

the precipitation was corrected with daily Climate Prediction Center (CPC) Unified (CPCU; Chen125

et al. (2008)) precipitation observations everywhere. For MERRA-2 the input precipitation differs126
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in two ways: i) in the high latitudes the MERRA-2 model-generated precipitation is retained, and127

ii) over Africa the MERRA-2 precipitation is corrected with pentad-scale blended satellite and128

gauge-based observations from the CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin129

(1997)) and the Global Precipitation Climatology Project (GPCP; Huffman et al. (2009)) version130

2.1.131

The land surface turbulent fluxes from the NASA reanalyses (MERRA-2, MERRA-Land, and132

MERRA) have not been explicitly evaluated globally. However, Jiménez et al. (2011) and Mueller133

et al. (2011) both included MERRA LH when merging multiple LH global land data sets into a134

single enhanced estimate (see Section 2.b), and in both studies MERRA was amongst the high-135

est of the input LH estimates used. Additionally, Jiménez et al. (2011) noted a sharp gradient136

in the MERRA LH around 10◦S in the tropics that was not present in other LH estimates. This137

bias gradient was traced to MERRA’s excessive rainfall canopy interception and precipitation er-138

rors (Reichle et al. 2011). Consequently, the interception reservoir parameters were revised for139

MERRA-Land (and MERRA-2) to eliminate this feature (the interception reservoir update was140

the most significant modeling change from MERRA to MERRA-Land).141

An additional reanalysis, ERA-Interim, from the European Centre for Medium Range Weather142

Forecasting (Dee et al. 2011), is included in the evaluation of the temporal behavior of the turbulent143

fluxes. In contrast to the NASA reanalyses, ERA-Interim includes a land surface updating scheme144

(de Rosnay et al. 2014). Specifically, the soil moisture, soil temperature, and snow temperatures145

are updated to minimize errors in the forecast screen-level relative humidity and temperature,146

while the snow depths are updated using satellite- and ground-based snow cover and snow depth147

observations.148
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b. Annual global land energy budget estimates149

We compare the reanalyses annual global land energy budgets to three state of the art estimates,150

from Trenberth et al. (2009), Wild et al. (2015), and the NEWS program estimates of L’Ecuyer151

et al. (2015). Each of these is based on a weighted merger of multiple modeled and observed data152

sets, and each applies to the energy budget at the start of the 21st Century. For Trenberth et al.153

(2009) we have used their estimates for the ‘CERES period’ of 2000-2004; Wild et al. (2015)154

nominally refers to the same period; while L’Ecuyer et al. (2015) nominally refers to 2000-2009.155

Note that the MERRA LH and SH over land were used as one of the inputs in NEWS.156

These three global energy budget studies all provide continental and oceanic energy estimates,157

where ‘continental’ is defined as non-ocean, and so includes land, land-ice, and lakes, but excludes158

inland seas. By contrast, the land estimates from MERRA-2, MERRA-Land, and MERRA apply159

to the area modeled by the land surface model, excluding land-ice, lakes, and inland seas. The160

discrepancy due to the inclusion or exclusion of land-ice is significant: land-ice accounts for 10%161

of the continental area, with Antarctica making up 95% of this. NEWS provides energy bud-162

gets for each continent separately (L’Ecuyer et al. 2015), and we use their (balance-constrained)163

energy budget estimates to approximate the land-only energy budget terms by subtracting the area-164

weighted Antarctica estimates from the global continental estimates. We then use our land-only165

NEWS estimates to approximate the continental to land ratio for each NEWS energy budget term.166

By assuming that the same ratios apply to Trenberth et al. (2009) and Wild et al. (2015) we then167

approximate land-only estimates for the latter two studies. L’Ecuyer et al. (2015) and Wild et al.168

(2015) both provide uncertainty ranges for their globally averaged continental estimates, which169

we have applied unchanged to our approximated land-only estimates.170
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For LH, we have also used three additional global land annual average estimates from the hy-171

drology community, from Jiménez et al. (2011), Mueller et al. (2011), and Mueller et al. (2013).172

These estimates are also based on merging modeled and observed estimates. Jiménez et al. (2011)173

applies to global land (using a similar land definition to the NASA reanalyses) for 1994, while174

Mueller et al. (2011) applies to the global land area, excluding the Sahara, from 1989-1995, and175

Mueller et al. (2013) applies to the global land plus Greenland for 1989-2005. As previously noted,176

MERRA LH was one of the inputs used in the multi-product mergers of Jiménez et al. (2011) and177

Mueller et al. (2011).178

c. Gridded reference data sets179

The coverage and resolution of each gridded reference data set, together with a brief summary180

of important interdependencies with other data sets or reanalyses used in the study and uncertainty181

estimates (where available) are summarized in Table 2, with further details provided below.182

1) GLEAM183

GLEAM (version 3.1a) provides daily estimates of terrestrial evapotranspiration, estimated from184

satellite and reanalysis forcing using a Priestley and Taylor-based model (Miralles et al. 2011;185

Martens et al. 2017). The precipitation is from the Multi-Source Weighted-Ensemble Precipitation,186

which is a multi-model merger of established precipitation data sets, including the same CPCU187

data set used in MERRA-Land and MERRA-2, as well as ERA-Interim precipitation (the latter is188

used predominantly in the high latitudes, where observed precipitation data sets are more uncertain189

(Beck et al. 2017)). The net surface radiation and T 2m are from ERA-Interim. Compared to190

independent observations from 91 flux towers, GLEAM has an average unbiased root mean square191
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error (ubRMSE; or error standard deviation) of 20 Wm−2 and an average anomaly correlation of192

0.42 (Martens et al. 2017).193

2) MTE194

MTE provides global estimates of carbon dioxide, energy, and water fluxes at the land surface,195

calculated using a machine learning technique to upscale half-hourly energy balance-corrected196

eddy covariance observations from 253 Fluxnet tower observations (Jung et al. 2011). The input197

Fluxnet observations are from the La Thuile data release, an earlier generation of the Fluxnet-198

2015 data set used here (to be introduced in Section 2.d). CPCU precipitation (again, used directly199

in MERRA-Land and MERRA-2) and a T 2m data set based on CRU data (Jung et al. 2011) are200

used as predictive (regression) variables in the MTE. However, this meteorological data has little201

impact on the MTE monthly anomalies, which are instead driven by the vegetation variability202

as observed by the fraction of absorbed Photosynthetically Active Radiation (fPAR; Jung et al.203

(2010)). When 20% of the Fluxnet training data was withheld from the algorithm, the average204

Root Mean Square Error (RMSE) with the withheld data was 15 Wm−2, for both LH and SH, and205

the average anomaly correlation was 0.57 for LH and 0.60 for SH (Jung et al. 2011). In general,206

the MTE method is better suited to estimating spatial variability and the seasonal cycle than it is207

to capturing interannual anomaly patterns (Jung et al. 2009).208

3) CRU TEMPERATURE DATA209

CRU TSv4.00 provides gridded monthly means of the daily mean, minimum, and maximum210

temperature over land (Harris et al. 2014; University of East Anglia Climate Research Unit et211

al. 2014). The temperatures are calculated from quality controlled climate station data, which are212

interpolated onto the grid according to an assumed correlation decay distance (set to 1200 km for213
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temperature variables). In instances where no station data are available within the assumed decay214

distance, the published data value defaults to the climatology. Here, such climatological values215

have been screened out. Also, we require at least 10 data points to estimate each statistic for a216

given grid cell. Even with this screening, the gridded output will be much less certain when/where217

station coverage is less dense, which occurs over Africa, South America, central Australia, and the218

high latitudes.219

4) CERES-EBAF RADIATION DATA220

CERES-EBAF version 4.00 surface radiances are produced with a radiative transfer model af-221

ter adjusting modeled and observed input data for consistency with Top of Atmosphere (TOA)222

CERES-EBAF radiation (Kato et al. 2013). The input data (surface, cloud, and atmospheric prop-223

erties) are adjusted according to their observation-based estimated uncertainties. The input temper-224

ature and humidity profiles and land surface skin temperature (Tskin) are from NASA’s GEOS-5.4.1225

modeling and assimilation system, the same system (although a different version) used in MERRA226

and MERRA-2.227

The CERES output shortwave irradiances are primarily determined by (observation-based) TOA228

radiation and clouds, hence they are reasonably independent of the MERRA and MERRA-2 re-229

analyses (Kato et al. 2013). On the other hand, the CERES output longwave irradiances, and230

particularly the upwelling longwave (LWu), are strongly dependent on the GEOS-5 Tskin input.231

However, the CERES algorithm does adjust its input GEOS-5 Tskin with observation-based cloud232

information, so comparison between the CERES-EBAF and GEOS-5 LWu partly reflects these233

observation-based adjustments, even though the two fields are not independent. Compared to in-234

dependent ground-based observations from 24 sites over land, the RMSE of the CERES-EBAF235

radiation is 12 Wm−2 for downwelling shortwave (SWd), and 10 Wm−2 for downwelling long-236
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wave (LWd) (CERES-EBAF 2017). For the regional estimates over land, CERES-EBAF (2017)237

estimated the uncertainty to be 12 Wm−2 for SWd , 4 Wm−2 for upwelling shortwave (SWu), 10238

Wm−2 for LWd , and 18 Wm−2 for LWu.239

5) GRIDDED DATA SET PROCESSING240

As noted in Tables 1 and 2 some of the reference data sets and reanalyses used here publish241

output that applies only to the land fraction within each grid cell, while others publish a single242

estimate that applies to all surface types (land, permanent land-ice, lakes, ocean) within each grid243

cell. All of the gridded data sets and reanalyses were screened by removing all grid cells where244

the MERRA-2 land fraction was less than 50% (after interpolation to the relevant resolution), and245

then aggregated up to monthly means and 1◦ spatial resolution. All maps of global statistics are246

based on the Boreal summer months of JJA only, and each comparison is made over the maximum247

available co-incident time period, with the time periods noted in the relevant figure captions. The248

anomaly correlations (Ranom) are evaluated based on anomalies from the mean seasonal cycle249

(calculated by subtracting the time period mean separately for each calendar month). The gridded250

reference data sets were also used to estimate the annual global land average values, for which the251

(interpolated) MERRA-2 land area in each grid cell was used.252

d. Fluxnet-2015 tower observations253

The Fluxnet-2015 (Fluxnet 2015) sites were selected by downloading all Tier 1 observations at254

non-irrigated sites within grid cells classified as land at 1◦ resolution (as derived above in Section255

2.c.5), and for which at least a 10 year data record is available. Eddy covariance sensors underesti-256

mate turbulent heat fluxes and do not generally close the energy balance (Wilson et al. 2002), hence257

we used the Fluxnet-2015 energy balance closure-corrected LH and SH (see Fluxnet (2015) for258
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details of the correction method). While these corrections are rather uncertain, the corrected LH259

and SH showed better agreement with all of the reanalyses in Table 1 in terms of the means across260

all sites and the correlation of the means between the sites (while having negligible impact on the261

mean time series anomaly correlations). The balance-corrected Fluxnet data were then screened262

to retain only days with less than 10% gap-filled data, and only sites with data for at least 2550263

days (∼ 70% of 10 years). The monthly means were then calculated for months with at least 15264

days of observations after the above screening, and the corresponding reanalysis monthly means265

were estimated using the same days. The resulting Fluxnet monthly time series were visually in-266

spected, and obviously unrealistic features were removed. Four sites with unrealistic time series267

were removed. Of the remaining 21 stations, just one was in the Southern Hemisphere. Since our268

evaluation focuses on the Boreal summertime, this site was excluded. The remaining 20 sites that269

have been used in this study are listed in supplemental Table 1.270

3. Results271

a. Annual global land energy budgets272

The globally averaged annual land energy budget estimates for MERRA-2, MERRA-Land, and273

MERRA are illustrated in Figure 1, with numerical values given in Table 3. For each term, the274

estimates for MERRA-2 and MERRA are similar (within 2-3 Wm−2), while the partitioning of275

Rnet into LH and SH differs for MERRA-Land, which is shifted towards greater SH. Compared to276

MERRA, MERRA-Land has 11 Wm−2 more SH, and 8 Wm−2 less LH, with the difference in Rnet277

due to decreased LWu (recall that in the offline MERRA-Land SWnet and LWd are taken directly278

from MERRA).279
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Figure 1 also includes the energy budget estimates from the literature (see Section 2.b), as well280

as the annual global land averages for each of the gridded reference data sets in Table 2. In Figure281

1a, the MERRA-2 and MERRA global land LH are higher than all of the other estimates (although282

MERRA-2 is within the Jiménez et al. (2011) and Wild et al. (2015) confidence intervals). The283

three (land-adjusted) LH estimates from the global energy budget studies (Trenberth et al. (2009),284

Wild et al. (2015), and NEWS) are very similar to each other, and to MTE, GLEAM, Mueller et al.285

(2011), and MERRA-Land (all are within 1 Wm−2). While the other two LH estimates from the286

hydrology community (Jiménez et al. (2011) and Mueller et al. (2013)) are higher, they are not as287

high as MERRA-2 and MERRA. Compared to the average of the three global land energy budget288

estimates, the MERRA-2 LH is biased high by 6 Wm−2 (15%), while MERRA is biased high by289

9 Wm−2 (21%), and MERRA-Land is much closer, being biased high by just 1 Wm−2 (2%).290

For the global land SH in Figure 1b, MERRA-2 and MERRA are both higher than Trenberth291

et al. (2009) and Wild et al. (2015), although lower than NEWS (but within the NEWS confidence292

interval) and very close (within 1 Wm−2) to MTE. Compared to the average of the three global293

land energy budget estimates, MERRA-2 is biased high by 5 Wm−2 (15%) and MERRA by 4294

Wm−2 (12%), while MERRA-Land is much higher, with a bias of 15 Wm−2 (42%).295

The positive biases in both LH and SH from the reanalyses indicate a positive bias in the incident296

energy at the land surface. Indeed, Figure 1g shows that the reanalyses Rnet exceed the three297

global energy budget estimates, although MERRA-2 (the lowest of the reanalyses) is only slightly298

higher (2 Wm−2) than the CERES-EBAF value. Compared to the average of the three global299

energy budget estimates, the Rnet biases are 12 Wm−2 (15%) for MERRA-2, 13 Wm−2 (17%) for300

MERRA, and 16 Wm−2 (21%) for MERRA-Land. Figures 1c-f show that the positive Rnet bias in301

MERRA-2 and MERRA is made up of a large positive bias in SWd combined with insufficient LWu,302

both partly offset by underestimated LWd . For SWd (Figure 1c) MERRA-2 and MERRA are higher303
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than all three global land energy budget estimates and CERES-EBAF, with a bias compared to the304

the three-product average of 14 Wm−2 (7%) for MERRA-2 and 16 Wm−2 (8%) for MERRA.305

For SWu (Figure 1d), MERRA-2 and MERRA are both above NEWS, Trenberth et al. (2009),306

and CERES-EBAF, but below Wild et al. (2015) (although within the confidence interval). Both307

are biased high by 3 Wm−2 (8%), compared to the three-product average. For LWd (Figure 1e),308

MERRA-2 and MERRA are lower than the of the other estimates, with biases of -11 Wm−2 (-309

3%) for MERRA-2 and -10 Wm−2 (-3%) for MERRA against the three-product average. For310

LWu (Figure 1f) MERRA-2, MERRA-Land, and MERRA are again lower than the other plotted311

estimates, with biases of -11 Wm−2 (-3%) for MERRA-2, -13 Wm−2 (-3%) for MERRA-Land,312

and -10 Wm−2 (-3%) for MERRA.313

The literature estimates in Figure 1 are presented as long term means, and each represents dif-314

ferent temporal and spatial coverage. Likewise, the annual global land averages for the gridded315

reference data sets in Figure 1 are based on the full available (spatial and temporal) coverage for316

each. However, the gridded reference data sets and reanalyses can be cross-screened to ensure that317

they are compared with consistent coverage. With this cross-screening, the MERRA-2 LH bias318

estimate is 7 Wm−2 vs. GLEAM, or 9 Wm−2vs. MTE, while the SH bias is 1 Wm−2 vs. MTE,319

and the radiation biases vs. CERES-EBAF are 10 Wm−2 for SWu, 2 Wm−2 for SWd , -18 Wm−2 for320

LWd , -11Wm−2 for LWu, and <0.5 Wm−2 for Rnet . In general, the above-quoted biases (calculated321

after cross-screening) are all close (within 1 Wm−2) to the values estimated from the data plotted322

in Figure 1 (which does not include cross-screening), with the exception of the LH bias vs. MTE,323

which is 6 Wm−2 without cross-screening (compared to 9 Wm−2). This discrepancy is due to the324

MTE global mean being lower than it otherwise would be, due to the lack of coverage over the325

Sahara (which has near-zero annual mean LH).326
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b. Land-atmosphere coupling and the MERRA-2 precipitation corrections327

Here, we identify regions where, in MERRA-2, i) LH is sensitive to precipitation (or soil mois-328

ture), and ii) the daily maximum T 2m (T 2m
max) is sensitive to the applied precipitation corrections.329

These regions can then be used to determine where the change in performance from MERRA to330

MERRA-2 is most likely associated with the precipitation corrections. Note that for part ii) above,331

the diurnal temperature range could be expected to have a stronger signal of the daytime turbulent332

heat fluxes (Betts et al. 2017), however a preliminary comparison (not shown) revealed similar re-333

sults for DTR and T 2m
max, and we have presented the results for T 2m

max since this variables is included334

in the published MERRA-2 data sets.335

1) SOIL MOISTURE AND LATENT HEATING336

To first order, LH (or evapotranspiration) from soil and vegetation surfaces can be conceptu-337

alized as either a moisture- or energy-limited process. In drier conditions (i.e., for soil moisture338

below some critical point), LH is moisture-limited in that it is restricted by the amount of soil339

moisture available for evapotranspiration. Temporal variations in LH will then be correlated with340

the plant available soil moisture (principally, the soil moisture in the root-zone). In contrast, in341

more humid conditions LH is energy limited; there is sufficient soil moisture available for evap-342

otranspiration, so LH proceeds at the maximum rate determined by atmospheric water demand,343

and temporal variations in LH are accordingly correlated with temporal variations in atmospheric344

demand (net radiation, atmospheric humidity deficit, and wind), rather than soil moisture.345

Figure 2 shows the squared correlation between the JJA monthly anomaly MERRA-2 LH and346

rootzone soil moisture (R2
anom(LH,SM)). Lower R2

anom(LH,SM) indicates a tendency towards347

energy-limited LH, which for the Boreal summer occurs in the high latitudes, central and eastern348

Europe, the eastern US, south China, and much of the tropics (the Amazon, equatorial Africa, and349
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southeast Asia). On the other hand, higher R2
anom(LH,SM) indicates a tendency towards moisture-350

limited LH, and occurs across the remainder of the low and mid-latitudes. While we have plotted351

JJA to focus on the Boreal summer, there are still regions of moisture-limited LH in the southern352

hemisphere during Austral winter, specifically in arid regions (southern Africa, much of Australia,353

and the desert and steppe regions of South America).354

2) PRECIPITATION FEEDBACK ON AIR TEMPERATURE355

Figure 3 shows maps of the squared anomaly correlation (R2
anom) between anomaly timeseries356

of JJA MERRA-2 monthly T 2m
max and anomaly timeseries of 2-month (current + previous month)357

averaged MERRA-2 precipitation. For example, the June T 2m
max is compared to the (May+June)358

precipitation, while the July T 2m
max is compared to the (June+July) precipitation, and so on. The359

precipitation is lagged like this to allow the precipitation signal to accumulate in the soil, and influ-360

ence the subsequent T 2m
max. In Figure 3a the MERRA-2 model-generated precipitation (PRECTOT)361

is used, while in Figure 3b the MERRA-2 observation-corrected precipitation (PRECTOTCORR)362

is used. The R2
anom are plotted only for negative R values, since the dominant local relationship be-363

tween precipitation and daytime temperature is negative (i.e., under moisture-limited conditions,364

reduced precipitation leads to reduced soil moisture, which limits LH and increases SH and T 2m).365

Figure 3b reflects the modeled relationship in MERRA-2 between precipitation falling on the sur-366

face and T 2m
max.Even with the difference in time periods, the patterns are similar to those found367

across the contiguous U.S. from observations by Koster et al. (2015).368

Figure 3c then shows the difference between R2
anom(T

2m
max,PRECTOTCORR) and369

R2
anom(T

2m
max,PRECTOT ). This difference (∆R2

anom) is the increase in the fraction of vari-370

ance in T 2m
max explained by the (observed) precipitation seen by the land (PRECTOTCORR) over371

that explained by the model-generated precipitation (PRECTOT). It thus provides a measure of372

18



the local impact of the observed precipitation on the MERRA-2 T 2m
max. This measure is sensitive373

to both the magnitude of the precipitation corrections and the local response of the atmospheric374

model to those corrections. Note that the lack of sensitivity in the high latitudes was inevitable for375

this metric, since the model-generated precipitation is used there.376

For the Boreal summer, the strongest impact of the observed precipitation, which can explain377

more than 25% of the T 2m
max variance, is indicated in the central US, central America, the northern378

tip of South America, across a broad swath along the Sahel, and parts of south Asia. Note that379

these regions do not directly correspond to the regions of strongest moisture-limited LH in Figure380

2, for at least two reasons. First, a strong sensitivity of evapotranspiration to soil moisture (Figure381

2) does not imply that the soil moisture variations are locally strong enough to induce large evap-382

otranspiration variations and thus large impacts on air temperature (Figure 3c). Second, as noted383

previously, the plotted sensitivity also includes a signal of the size of the precipitation corrections,384

and so will be enhanced where the differences between the model-generated and observation-385

corrected precipitation are larger.386

Figure 3c is consistent with previous studies identifying hot-spots of strong coupling between387

the land and T 2m. In particular Koster et al. (2006) and Miralles et al. (2012) both identify similar388

regions of strong coupling centered on the central US/central America and the Sahel, although389

they do not agree as well over south Asia. Over South Asia Koster et al. (2006) does not locate a390

hotspot, while Miralles et al. (2012) identifies India as having the strongest coupling, and Figure391

3c suggests patchy regions of coverage spanning from southeast Asia through the north of India.392

For reference, the corresponding maps for the Austral summer (December-January-February)393

are shown in supplemental Figure 1 for R2
anom(LH,SM) and supplemental Figure 2 for the sensi-394

tivity to the precipitation corrections. In supplemental Figure 1, the R2
anom(LH,SM) over Austral395

summer again shows the expected pattern of moisture-limited LH in drier areas of the summer396
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hemisphere (almost everywhere, outside of the tropics). As with the Boreal summer, regions of397

moisture-limitation LH extend into the winter Hemisphere. However, the effect of reduced radia-398

tion close to the poles is now evident in the switch to energy-limited LH, even in arid regions that399

are poleward of around 50◦ (such as central Asia). Supplemental Figure 2 shows strong sensitivity400

of T 2m
max to the precipitation corrections across nearly all of the southern Hemisphere, including the401

Amazon and tropical Africa. Since these latter two areas typically have saturated soils, this strong402

signal is unlikely due to the precipitation-soil moisture pathway, and is perhaps due to sensitiv-403

ity of evaporative cooling from the canopy interception to changes in precipitation supply to the404

interception reservoir.405

c. Biases over Boreal summer406

In Section 3.a, the biases in the reanalyses’ global land energy budgets were provided as annual407

means. The seasonal cycle of the monthly mean global land biases (not shown) reveal that the408

largest global land biases for all budget terms occur in the Boreal summer (JJA). Below, maps of409

these JJA biases are presented and discussed, together with the corresponding biases in 2 m air410

temperatures.411

1) ENERGY BUDGET TERMS412

Figure 4 shows maps of the reanalyses’ JJA biases in LH and SH compared to each of GLEAM413

and MTE. For LH, the regions of positive and negative biases relative to GLEAM or MTE are414

similar (compare the first and second columns of Figure 4). For both, the LH biases depend on the415

local LH regime, with energy-limited regions (low R2
anom(LH,SM) in Figure 2) generally having416

larger positive LH biases (> 20 Wm−2; e.g., for MERRA-2 in Figures 4d,e across the tropics, south417

Asia, and the northern high latitudes), while moisture-limited regions (high R2
anom(LH,SM) in418
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Figure 2) tend to have smaller biases (magnitude <10Wm−2). Consequently, the spatial correlation419

between R2
anom(LH,SM) (as plotted in Figure 2) and the MERRA-2 LH biases is -0.65 for GLEAM420

and -0.73 for MTE.421

The MERRA LH biases (Figures 4j,k) show some of the same features as for MERRA-2, again422

with a tendency for large positive biases in energy-limited LH regimes. The most prominent423

difference is the sharp bias gradient in MERRA around 10◦S (most notable in South America).424

As discussed in Section 2.b, this is associated with the unrealistically large rainfall interception425

reservoir in MERRA, combined with the MERRA precipitation errors; these problems have been426

alleviated in MERRA-2 (and MERRA-Land). Additionally, there are some isolated regions of427

large positive biases in moisture-limited regimes in MERRA that are removed in MERRA-2 (and428

MERRA-Land), such as in Mexico and south India.429

Overall, in energy-limited regions (R2
anom(LH,SM) <0.5 in Figure 2) the area-averaged LH bias430

in MERRA-2 (25.5 Wm−2 compared to GLEAM, 29.9 Wm−2 compared to MTE) was slightly431

higher than for MERRA (24.1 Wm−2 compared to GLEAM, 27.6 Wm−2 compared to MTE), both432

of which are much higher than for MERRA-Land (11.3 Wm−2 compared to GLEAM, and 7.6433

Wm−2 compared to MTE). In contrast, in moisture-limited LH regions (R2
anom(LH,SM) >0.5 in434

Figure 2), the area-averaged LH bias is highest in MERRA (7.0 Wm−2 compared to GLEAM,435

5.2 Wm−2 compared to MTE), and reduced in MERRA-2 (3.8 Wm−2 compared to GLEAM, 1.5436

Wm−2 compared to MTE), and even further reduced in MERRA-Land (0.3 Wm−2 compared to437

GLEAM, -2.9 Wm−2 compared to MTE).438

The third column of Figure 4 shows the reanalyses biases in SH compared to MTE. In gen-439

eral, the SH biases for each reanalyses have an inverse relationship with the LH biases in the440

first two columns (for MERRA-2, the spatial correlation between the SH biases and the LH bi-441

ases is -0.68 for GLEAM LH and -0.78 for MTE LH). Consequently, the evaporative fraction442
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(EF=LH/(LH+SH)) biases compared to MTE in the first column of Figure 5 show a spatial pattern443

very similar to that of the LH biases (for MERRA-2, the spatial correlation between MTE LH and444

EF biases is 0.83).445

The sum of LH and SH approximates the net incoming radiation (after neglecting the ground heat446

flux and temporal change in Tskin). The second and third columns of Figure 5 show, respectively,447

the biases in the reanalyses LH+SH sum compared to MTE and the biases in their Rnet compared448

to CERES-EBAF. There is a weak agreement between the Rnet biases suggested by MTE and449

CERES-EBAF (for MERRA-2, the spatial correlation is 0.46). Comparison to MTE (Figures 5,450

second column) suggests that the reanalyses net surface radiation tends to be overestimated, with451

the largest biases (>30 Wm−2) occurring over the Amazon, the horn of Arica, and the Tibetan452

Plateau. While comparison to CERES-EBAF (Figure 5, third column) also suggests relatively453

large positive biases over the Tibetan Plateau and the horn of Africa, these positive biases are454

smaller in both magnitude and regional extent than was suggested by MTE. Additionally, CERES-455

EBAF also indicates strong negative biases (<-30 Wm−2) over the Sahel and the southeast US,456

particularly in MERRA-Land (Figure 5i) and MERRA (Figure 5l). Finally, inter-comparing the457

Rnet biases for each reanalyses shows qualitatively that the broad patterns are similar in MERRA-2458

and MERRA (also MERRA-Land), although MERRA has a tendency towards larger (positive and459

negative) biases.460

There is no obvious correspondence between the regional biases in the LH (compared to461

GLEAM or MTE) and the regional biases in Rnet (compared to either MTE LH+SH or CERES-462

EBAF). For example, the spatial correlations are less than 0.1 between the MERRA-2 LH bias463

(implied by comparison to GLEAM or MTE), and the MERRA-2 LH+SH bias (implied by MTE).464

Likewise, the spatial correlations are again less than 0.1 between the MERRA-2 LH bias (implied465

by GLEAM of MTE) and the MERRA-2 Rnet bias (implied by CERES-EBAF). This suggests then466
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that the pattern of regional biases in the reanalyses LH for JJA (compared to either GLEAM or467

MTE) are associated with differences in the partitioning of incoming radiation into LH and SH,468

rather than with differences in the surface radiation (compared to MTE or CERES-EBAF) itself.469

While radiation biases do not appear to be the main predictor of LH biases, biased radiation will470

results in biased LH and/or SH. Hence, we have partitioned the JJA Rnet bias between MERRA-2471

and CERES-EBAF into the individual contributions from each radiation term. Figure 6 shows the472

JJA biases between MERRA-2 and CERES-EBAF for the SWnet , LWd , and LWu. In terms of the473

direction of the biases, the broad patterns of regional biases in the radiation terms are unchanged474

from MERRA (not shown). The direction of the regional Rnet biases for MERRA-2 in Figure 5f475

largely mirror the regional SWnet biases in Figure 6d (spatial correlation: 0.75), the main exception476

being over the southeast US. The LW biases are somewhat balanced, in that both are negative477

across most of the domain, with the LWd bias in Figure 6e typically being slightly more negative478

than the LWu bias in Figure 6f. Both have relatively large negative biases (magnitude > 30 Wm−2)479

in northern hemisphere desert regions, and smaller (magnitude: 10-20 Wm−2) negative biases480

elsewhere. The spatial distribution of the SWnet biases mirrors that of the downwelling shortwave481

(SWd , not shown), indicating that the SWnet biases are primarily driven by SWd differences rather482

than differences in the surface albedo used in CERES-EBAF and GEOS-5. The above patterns483

of overestimated SWnet (or SWd) and underestimated LWd across much of the globe are consistent484

with a known tendency for the GEOS-5 systems to underestimate mid-latitude continental cloud485

cover (Molod et al. 2012; Wang and Dickinson 2013; Gelaro and Coauthors 2015).486

The LWu is calculated from the Tskin, and the negative biases in MERRA-2 (and also MERRA487

and MERRA-Land) indicate a cool bias in the model Tskin. At 285 K, a LWu bias of 10 Wm−2 is488

roughly equivalent to a Tskin bias of 2 K. Recall that the CERES-EBAF LWu is not independent of489

the MERRA suite of reanalyses, due to its use of GEOS-5 Tskin. However, the input GEOS-5 Tskin490
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is adjusted within the CERES-EBAF algorithm to constrain the TOA irradiance, so comparison491

of GEOS-5 and CERES LWu indicates the adjustment required to the GEOS-5 Tskin to balance the492

TOA fluxes. Previous work has also suggested that the GEOS-5 Tskin is underestimated, partic-493

ularly in dry regions. For example, in agreement with our Figure 6f, Draper et al. (2015) found494

large cool biases in the GEOS-5 Tskin over desert regions in summer (their Fig. 5), compared to495

remotely sensed observations. As argued in Draper et al. (2015), this GEOS-5 Tskin cool bias is,496

at least in part, caused by the model’s Tskin definition differing from that of a true skin layer from497

which LWu is emitted (or as is observed in the thermal infrared).498

In summary, the pattern of regional LH biases in the reanalyses suggested by GLEAM and MTE499

are very similar. This result adds confidence to the use of GLEAM and MTE for estimating re-500

gional biases in the reanalyses. As with the annual global land averages in Figure 1, the maps501

presented here suggest that MERRA-2 and MERRA (but not MERRA-Land) have a general ten-502

dency to overestimate LH. If the GLEAM, MTE, and CERES-EBAF regional means are assumed503

to be more accurate than the reanalyses, the above comparisons suggest that in energy-limited504

regions, MERRA-2 (and MERRA) overestimate LH due to an overestimated evaporative fraction505

(i.e., too much incoming radiation is converted to LH rather than SH). There is little change in the506

global average biases from MERRA to MERRA-2. However, there are some isolated regions in507

Mexico and south Asia that are typified by moisture-limited LH, where MERRA has positive LH508

biases associated with overestimated EF, while MERRA-2 and MERRA-Land have much smaller509

biases. The precipitation corrections in MERRA-2 (and MERRA-Land) removed a relatively large510

amount of precipitation across these locations (Reichle et al. (2017b); their Figure 3b), strongly511

suggesting that the use of precipitation observations in these products reduced the LH biases.512
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2) AIR TEMPERATURE513

The biases in the MERRA-2 and MERRA JJA monthly mean daily minimum, daily maximum,514

and diurnal range in T 2m, relative to the CRU data set, are shown in Figure 7 (T 2m is not calculated515

by the land-only MERRA-Land system). For the daily minimum T 2m (T 2m
min) in the left column,516

both reanalyses tend towards positive (warm) biases, particularly MERRA. For the daily maximum517

T 2m (T 2m
max) in the center column, MERRA-2 tends towards cool biases, with patches of warm518

biases across central Asia and the Arabian Peninsula (investigation of the large positive bias in519

the Arabian Peninsula suggests it is associated with an error in the CRU reference data, rather520

than the reanalyses). For MERRA, these patches of positive bias are expanded to cover most of521

the desert region in the northern hemisphere, and also much of the southern hemisphere. For522

the diurnal temperature range (DTR) in the third column, the MERRA-2 biases inherit the broad523

spatial pattern of the T 2m
max biases, while for MERRA some of the large positive T 2m

max biases are524

offset in the DTR by co-located positive T 2m
min.525

The LH and SH biases in Figures 4 and the DTR biases in Figure 7 show some of the ex-526

pected regional similarities. In particular, in the high latitudes and the Amazon MERRA-2 has527

relatively large positive LH biases (and negative SH biases) and relatively large negative DTR bi-528

ases. MERRA also has overestimated LH and underestimated DTR in the same regions, as well529

as in southeast Asia and central America. This is consistent with an underestimated DTR caused530

by underestimated SH (and overestimated LH), particularly given that the Rnet bias is generally531

neutral in these regions in Figure 5. It should however be noted that the high latitudes and the532

Amazon regions are both data-scarce, and both the reanalyses and reference data sets are less well533

constrained. In other regions there is less correspondence. For example the western US also has534

underestimated DTR for MERRA and MERRA-2, while neither GLEAM nor MTE suggests over-535
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estimated LH. Over all, the spatial correlations between the LH biases and DTR biases are rather536

low (for MERRA-2, they are -0.38 for GLEAM and -0.47 for MTE).537

Recall that in Section 3.c.1 above, the CERES-EBAF comparison suggested that the MERRA-2538

(and MERRA) Tskin is generally biased cool, with larger cool biases in desert areas. However, a539

comparison of the LWu biases in Figure 6f to the T 2m
min and T 2m

max biases in Figures 7d,e shows little540

correspondence between them, and in particular the regions of relatively large cool Tskin biases541

(underestimated LWu ) in the northern hemisphere deserts do not have cool biases in either T 2m
max542

and T 2m
min. This apparent contradiction between the temperature biases suggested by comparison543

to the CERES-EBAF LWu (∼ Tskin) and the CRU T 2mdoes not necessarily imply that one of these544

data sets is incorrect, given the likelihood mentioned above that the model Tskin biases are at least545

partly associated with the model definition of Tskin.546

d. Turbulent heat flux anomaly correlations over Boreal summer547

Here the monthly mean turbulent heat flux time series are evaluated over Boreal summer based548

on their temporal correlations (Ranom) with the reference data sets. Figure 8 shows maps of the549

JJA Ranom for each of the NASA reanalyses (MERRA-2, MERRA-Land, and MERRA) and ERA-550

Interim, with the Ranom calculated separately vs. each of the GLEAM and MTE turbulent heat551

fluxes. For LH, the regional patterns in the Ranom vs. either GLEAM (Figure 8, first column) or552

MTE (Figure 8, second column) show some similar features (for MERRA-2, spatial correlation553

between Figures 8a and 8b: 0.69). Comparison to Figure 2 again suggests some dependence on554

the LH regime. In the Northern Hemisphere, the LH Ranom is generally highest (∼ 0.6) in regions555

where LH is moisture-limited, and generally much lower (<0.2) where LH is energy-limited. The556

two exceptions are the high latitudes, which have high LH Ranom and energy-limited LH, and the557
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Sahara, which has low LH Ranom and is moisture-limited (although LH variability in the Sahara is558

very low, making the signal susceptible to noise).559

The Ranom patterns for ERA-Interim in the final row of Figure 8 provide some additional context560

for evaluating the NASA reanalyses. The LH Ranom values are generally higher for ERA-Interim561

than for the NASA reanalyses. As for MERRA-2, the ERA-Interim Ranom vs MTE is relatively562

low in many energy-limited LH regimes (including the eastern US, tropics, and south Asia), while563

the Ranom for ERA-Interim vs. GLEAM is more spatially consistent, in contrast to the Ranom for564

MERRA-2. The relatively high Ranom between GLEAM and ERA-Interim LH in energy-limited565

LH regimes may well be due to GLEAM having used ERA-Interim radiation and temperature,566

since it is in these regions that these fields will have the strongest influence on the LH. On the567

other hand, the lower Ranom between the NASA reanalyses and the LH reference data sets (and568

also between ERA-Interim and MTE) could be attributed to errors in both the reference data sets569

and the reanalyses under energy-limited conditions. For MTE, this result was expected because570

MTE is thought to be more reliable in estimating temporal variability in moisture limited areas,571

since its temporal variability is largely driven by fPAR (Jung et al. 2010).572

Moving on to SH, the third column of Figure 8 shows the Ranom vs. MTE for each reanalysis.573

The regional patterns are similar to those for LH, with higher Ranom ( >0.5) in moisture-limited574

LH regions, and lower (< 0.2) values elsewhere. ERA-Interim Ranom vs. MTE is generally higher575

than the NASA reanalyses, with values greater than 0.5 across most of the globe (and particularly576

in the Northern Hemisphere). Despite the improved LH from MERRA-Land, the SH Ranom vs.577

MTE is lower than for MERRA (or MERRA-2).578

Globally averaged, the rank order of the mean LH Ranom, while rather low, is the same vs. ei-579

ther GLEAM or MTE and follows the expected progression of improvement from MERRA, to580

MERRA-Land, and then to MERRA-2. GLEAM suggests a larger improvement, from a globally581
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averaged Ranom of 0.39 for MERRA to 0.48 for MERRA-2, with MERRA-Land falling in be-582

tween (0.45). MTE suggests an improvement from 0.29 for MERRA to 0.34 for MERRA-2, with583

MERRA-Land again falling in between (0.32). For SH, the globally averaged Ranom vs. MTE is584

similar for MERRA (0.36) and MERRA-2 (0.37), but is much lower for MERRA-Land (0.28). For585

ERA-Interim, the global mean Ranom for LH is∼0.1 higher than for MERRA-2 (0.60 vs. GLEAM,586

and 0.44 vs. MTE) and ∼0.2 higher for SH (0.46 vs. MTE). The better agreement between ERA-587

Interim and the reference data sets could be a consequence of the land surface updates applied in588

ERA-Interim, which indirectly targets the turbulent heat fluxes. (Although recall that the relatively589

strong agreement between the GLEAM and ERA-Interim LH will partly reflect their dependence;590

see Section 2.c.2).591

e. Comparison to Fluxnet tower data592

Since the reference data sets used above do not represent direct observations, we now com-593

pare the globally-averaged LH and SH statistics from Section 3.a (for the annual mean turbulent594

heat fluxes over land), and Section 3.d (for the mean JJA Ranom) to statistics calculated against595

Fluxnet-2015 tower observations. Figure 9 shows the annual mean of the turbulent fluxes aver-596

aged across the 20 tower sites for the Fluxnet (eddy-covariance) measurements themselves and for597

each reanalysis and reference data set averaged across the 20 Fluxnet locations, with the global598

land annual means (from Figure 1) included for reference. For LH, comparison to the Fluxnet599

observations agrees with the results from the global land comparison in Section 3.a, again sug-600

gesting that the MERRA-2 LH is biased high, although the Fluxnet observations suggest a larger601

bias (of 12 Wm−2, or 30%) than was suggested by the global comparison (estimated as 6 Wm−2
602

in Section 3.a). Averaged across the 20 Fluxnet sites, the MTE LH is very close to the Fluxnet603

data (within 0.5 Wm−2), while GLEAM is slightly higher. For the interested reader, supplemental604
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Figure 3 shows scatterplots comparing the MERRA-2 and reference data set LH annual means at605

the 20 individual sites.606

For SH, the Fluxnet observations agree less well with the global land comparison. First, the607

annual mean of the Fluxnet data is about 10 Wm−2 below the global mean estimates from the608

other reference data sets. For each of the global reference data sets and reanalyses, the annual609

average over the 20 Fluxnet sites is also 15-20 Wm−2 lower than the global average, suggesting610

that the relatively low Fluxnet annual mean is associated with the spatial sampling of the Fluxnet611

sites. Second, averaged across the Fluxnet sites, the Fluxnet mean SH is close to that of MERRA-612

Land, and above that of MERRA-2 (by 6 Wm−2, 18 %). In contrast, for the global averages in613

Section 3.a the reference data sets were all close to MERRA-2 (and MERRA), with MERRA-Land614

standing out as being biased high.615

Figure 10 shows the JJA Ranom averaged over the 20 Fluxnet sites for each reanalyses vs. each of616

Fluxnet, GLEAM, and MTE, with the global average JJA Ranom from Section 3.d also included for617

GLEAM and MTE. The Ranom for the Fluxnet data are quite low, which is somewhat expected due618

to the mismatch in spatial representation between the tower-based observations and the reanalysis.619

Nonetheless, the Fluxnet Ranom (as well as the GLEAM and MTE Ranom at the same locations)620

indicates similar relative reanalysis performance as the global mean Ranom. In particular, for LH621

MERRA-2 and MERRA-Land outperform MERRA, as also indicated by the global means. How-622

ever, the one discrepancy is that the Ranom vs. the Fluxnet data is similar for ERA-Interim and623

MERRA-2, while the global comparisons (and also the GLEAM and MTE data averaged across624

the Fluxnet sites) all suggest that ERA-Interim outperforms MERRA-2 (giving mean Ranom around625

0.1 higher). For SH, the rank order between the average JJA Ranom is the same from the Fluxnet626

data than from the global reference data sets, with the MERRA-Land Ranom again being lower than627
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that for MERRA (and MERRA-2), and the ERA-Interim average Ranom being higher than that for628

MERRA-2.629

It is notable that over the Fluxnet tower sites, both GLEAM and MTE have higher average Ranom630

with the reanalyses than the Fluxnet observations do. In particular, MTE was trained on an earlier631

generation of the Fluxnet data, and the higher mean Ranom vs. MTE than vs. Fluxnet suggests that632

the MTE algorithm has added coarse-scale information (similar quality control was applied here633

as was applied to the tower observations used in MTE). For the interested reader, supplemental634

Figure 4 shows scatterplots of the MERRA-2 LH Ranom vs. each reference data set at the 20635

individual sites.636

Note that for Fluxnet, the Ranom for (LH+SH), plotted in Figure 10c is consistently about 0.1637

higher than the Ranom for either LH or SH separately. Decker et al. (2012) obtained a similar638

result for the correlation between reanalyses and tower observations. This indicates that the eddy639

covariance measurements and the reanalyses have a stronger agreement in the implied incoming640

radiation than in the partitioning of that radiation into LH and SH (this result is unchanged if the641

Ranom are calculated from the Fluxnet data that have not been energy balance-corrected ). This642

could be a signal of errors in the partitioning within the reanalyses, or perhaps just as likely,643

this difference is associated with the spatial representation of the tower observations, since the644

incoming radiation is more spatially homogeneous than either LH or SH on its own.645

f. Precipitation Corrections and Air Temperature Performance646

Finally, we seek to establish whether the precipitation corrections in MERRA-2 influenced the647

local T 2m
max. We do this by comparing the performance of the MERRA-2 and MERRA T 2m

max to648

Figure 3c, which shows the MERRA-2 sensitivity to observed precipitation. Figure 11 shows the649

T 2m
max Ranom vs. CRU observations over JJA for MERRA-2 and MERRA. In general, the MERRA-650
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2 Ranom is high (> 0.7) across most of the domain, particularly in the high latitudes, with much651

lower (< 0.4) values across much of the tropics and parts of South America, Africa, and south652

Asia. Note that the latter regions all have relatively sparsely distributed CRU station data, which is653

likely contributing to the lower agreement with the reanalyses. Compared to MERRA, the greatest654

improvements in the MERRA-2 T 2m
max Ranom occurred in the eastern US, much of tropical South655

America and Africa, the Sahel, and parts of south Asia and China. There are also several regions656

where the T 2m
max Ranom is reduced, including northern South America, and much of southeast Asia.657

Overall, the global averaged T 2m
max Ranom vs. CRU was increased from 0.69 for MERRA to 0.75 for658

MERRA-2.659

Comparing Figure 11c to Figure 3c, the regions with the strongest sensitivity of T 2m
max to the660

precipitation corrections generally have relatively large changes in the T 2m
max Ranom (including the661

Sahel, parts of south Asia, and central America). Consequently, where the metric in Figure662

3c is above 0.25 (i.e., the observation-corrected precipitation explains at least 25% more of the663

MERRA-2 T 2m
max variance than the model-generated precipitation does), the area-averaged absolute664

change in the Ranom is 0.15, compared to an area-average absolute change of 0.07 elsewhere. This665

tendency toward relatively large change in the T 2m
max Ranom where T 2m

max is sensitive to the precipita-666

tion corrections suggests that the observed precipitation in MERRA-2 contributed to the change in667

T 2m
max performance. Additionally, the change in T 2m

max Ranom in these regions is generally, although668

not always, positive (giving an area averaged change in the Ranom of 0.06 where the metric in Fig-669

ure 3c is greater than 0.25). In some of the instances where the T 2m
max Ranom is degraded, this can be670

traced back to errors in the precipitation observation data sets input into MERRA-2. For example,671

over Myanmar, the T 2m
max Ranom is decreased by more than 0.15, likely due to persistent local errors672

in the precipitation observations input into MERRA-2 (Reichle et al. 2017b). Finally, there are673

also regions with large changes in the T 2m
max Ranom outside of the regions of T 2m

max sensitivity to pre-674
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cipitation (the eastern US, tropical Africa and South America, and central China). The T 2m
max Ranom675

is increased in MERRA-2 across most of these regions, likely due to other advances (beyond the676

use of observed precipitation) in the MERRA-2 modeling and assimilation system.677

4. Summary and conclusions678

The land surface energy budgets of three reanalyses from NASA (MERRA, MERRA-Land, and679

MERRA-2) are compared here to the best available estimates from the literature and to (largely)680

independent global reference data sets. In terms of the global land annual averages, the results sug-681

gest that the MERRA-2 LH and SH are biased high by 5 Wm−2 and 6 Wm−2, respectively, while682

SWu has a large positive bias of 14 Wm−2, SWd is biased high by 3 Wm−2, and the upwelling and683

downwelling LW components are biased low, by 11 Wm−2 and 13 Wm−2, respectively. Compared684

to MERRA, this is a slight (∼ 2 Wm−2) reduction in the LH and SWnet biases, while the difference685

is even smaller for the LW terms (∼ 1 Wm−2). The radiation biases are associated with known686

issues in the GEOS-5 models used in the reanalyses, specifically a tendency to underestimate mid-687

latitude continental clouds (Wang and Dickinson 2013) and a cool bias in the model Tskin (Draper688

et al. 2015).689

Compared to reference flux estimates from GLEAM and MTE over the Boreal summer (when690

both the fluxes themselves and their biases are greatest), the largest MERRA-2 LH biases (>20691

Wm−2, vs. either GLEAM or MTE) occur in regions where LH is energy-limited, such as in the692

high latitudes, the tropics, parts of south Asia, and the eastern US. The MERRA-2 LH biases are693

typically smaller in regions where LH is moisture-limited, which include the drier regions of the694

mid and low latitudes. In some of these moisture-limited regions (parts of south Asia and Mexico)695

the high bias in the MERRA LH was largely removed in MERRA-2 (and MERRA-Land), likely696

because the observed precipitation used in the latter was lower than that produced by the MERRA697
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(or MERRA-2) modeling systems. Finally, comparison to the evaporative fraction from MTE and698

to Rnet from CERES-EBAF or as inferred from MTE LH+SH indicates that the regional biases in699

the reanalyses LH are generally associated with differences in the partitioning of Rnet into LH and700

SH rather than with differences in the radiation input.701

The temporal agreement between the reanalyses and the reference data sets over Boreal summer702

was measured using the monthly anomaly correlation (Ranom) over JJA. For LH, the Ranom between703

the reanalyses and the reference data sets (GLEAM and MTE) again showed some dependency704

on the LH regime, with a tendency towards better agreement where LH is moisture-limited than705

where it is energy-limited. The lower agreement in energy-limited regions does not necessar-706

ily imply poorer performance in the reanalyses, as it may be due to errors in the reference data707

sets. The globally averaged Ranom values show the expected improvement in skill with each new708

NASA reanalyses. For example, MERRA-2 has slightly better globally averaged LH Ranom (0.48709

vs GLEAM) than MERRA-Land (0.45), which is substantially better than MERRA (0.39). The710

Ranom was also calculated for the monthly mean daily T 2m
max vs. CRU reference data over JJA. Av-711

eraged over global land, the JJA T 2m
max Ranom vs. CRU increased from 0.69 for MERRA to 0.75712

for MERRA-2. The results presented above for the regional biases and Ranom were based on the713

Boreal summer, however the same analysis has been performed over the Austral summer (not714

shown), yielding qualitatively similar results.715

The use of observed precipitation in MERRA-2 was motivated by the hope that the subsequent716

improvements in simulated soil moisture would lead to the improved partitioning of incoming717

radiation between latent and sensible heating, ultimately leading to improvements in the diurnal718

evolution of the boundary layer. It is difficult, however, to unequivocally attribute the improve-719

ments in MERRA-2 to the use of observed precipitation because MERRA-2 includes many other720

modeling and assimilation advances relative to MERRA. Nonetheless, many of the improvements721
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in the MERRA-2 LH and T 2m are consistent with the changes expected from the use of observed722

precipitation. MERRA-2 and MERRA-Land have smaller positive LH biases and higher LH Ranom723

than MERRA in regions where LH is moisture-limited and thus sensitive to precipitation (south724

Asia and the western US). This is most easily explained by the forcing of the land surface with ob-725

served precipitation in MERRA-2. Additionally, regions where the MERRA-2 JJA T 2m
max was most726

sensitive to the precipitation corrections (the Sahel, central US, and parts of south Asia), generally727

experience larger changes in the T 2m
max Ranom from MERRA to MERRA-2. However, the changes728

in Ranom in these areas are not uniformly positive, and in some cases degraded T 2m
max Ranom can be729

traced back to problems in the input precipitation data sets (e.g., over Myanmar). In the future, the730

use of precipitation corrections could be enhanced by also implementing a land data assimilation731

scheme to update the model soil moisture according to observations (e.g., Draper et al. (2011);732

Dharssi et al. (2011); De Lannoy and Reichle (2016)). By making use of remotely sensed obser-733

vations, the land data assimilation would be particularly valuable in regions where the rain-gauge734

network is sparse or has known problems (e.g., in Africa and parts of southeast Asia).735

However, some of the largest biases and lowest Ranom for the MERRA-2 turbulent fluxes occur736

where the LH is energy-limited and thus less sensitive to improvements in the precipitation and737

soil moisture. Hence, future efforts to improve the MERRA-2 land surface turbulent fluxes would738

best be focused on other facets of the modeling and assimilation. Specifically, future GEOS-5739

development should focus on the overestimated evaporative fraction where LH is energy-limited.740

Additionally, even though the MERRA-2 Rnet is relatively unbiased (compared to CERES-EBAF),741

there are large compensating biases in the individual SW and LW radiation fluxes that are 2-3 times742

the magnitude of the LH biases in terms of the global land annual averages. Reducing the cloud743

bias in the atmospheric model will help these biases, as will re-defining the model Tskin to generate744

a LWu more consistent with observations.745
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Finally, the SH results for MERRA-Land are troubling. While MERRA-Land did have the746

desired reduction in the LH biases compared to MERRA (to 1 Wm−2 in the global land annual747

average), it also had a compensating, and much larger, increase in the SH bias (up to 15 Wm−2
748

in the global land average). Additionally, the JJA Ranom compared to MTE were reduced from749

MERRA to MERRA-Land (from a global average of 0.36 to 0.28), despite the LH Ranom being750

increased. The cause of the degraded SH in MERRA-Land is presently unknown, but given the751

otherwise similar MERRA and MERRA-Land land surface models and meteorological forcing,752

an obvious possibility is that the use of observed precipitation in an offline (land-only) replay of753

an analysis, such as MERRA-Land, can lead to inconsistencies in the forcing (e.g., warm and dry754

air, stemming from dry conditions in MERRA, overlying cold ground induced by high antecedent755

rainfall from the observations). Such inconsistencies would not appear in MERRA or (as much)756

in MERRA-2, given the coupling in the reanalyses of the land surface state with the overlying757

atmosphere.758

While this work focused on evaluating surface energy fluxes in MERRA-2, the findings have759

relevance to anyone interested in designing a methodology to evaluate global estimates of turbu-760

lent heat fluxes. The gridded LH reference data sets (GLEAM and MTE) had better agreement761

with the reanalyses time series (as measured by Ranom), and were more useful for evaluating the762

reanalysis output than were the tower observations. In particular they offer (near-) global cover-763

age across several decades, at similarly course resolution to the reanalyses. In the absence of a764

recognized truth for LH (or other similar terms), the recommended evaluation strategy is to com-765

pare the product under evaluation to multiple data sets. However, given the uncertainty in the766

available reference data sets, extra care is necessary to understand the methodology, input data,767

assumptions, and potential dependencies and weaknesses of each reference data set. This process768

relies on expert judgement and inevitably introduces some subjectivity into the interpretation of769
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the results. Further development of global gridded LH data sets (including the quality and quantity770

of ground-‘truth’ observations), to increase their confidence would obviously be of great benefit771

to this process.772

The GLEAM and MTE reference data sets used here are independent of each other and are based773

on very different methodologies, thus providing complementary information for use in an evalua-774

tion. However, given the use of the common precipitation input data in GLEAM as in MERRA-2,775

and the fact that MTE data is not optimized to estimate interannual variability, LH estimates from776

a third reference data set would be useful. Emerging global and multi-decadal land surface flux777

data sets based on an energy balance approach (Anderson et al. 2011), or alternative observational778

frameworks (Alemohammad et al. 2017) would provide useful complements to GLEAM and MTE779

for a more comprehensive analysis.780
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TABLE 1. The reanalyses

Data set Variables used Output coverage and resolution
(variable data set citation, where available)

MERRA-2
LH,SH, LWnet , SWnet
LWd
T 2m

max, T 2m
min

1980-ongoing, hourly, 5/8◦ x 0.5◦

global land (Global Modeling and Assimilation Office 2015b)
global surface (Global Modeling and Assimilation Office 2015a)
global surface (Global Modeling and Assimilation Office 2015c)

MERRA-Land
LH, SH, LWnet

1980-2016, hourly, 2/3◦ x 0.5◦

global land (Global Modeling and Assimilation Office 2008c)

MERRA
LH,SH, LWnet , SWnet
LWd
T 2m

max, T 2m
min

1979-2015, hourly, 2/3◦ x 0.5◦

global land (Global Modeling and Assimilation Office 2008b)
global surface (-)
global surface (Global Modeling and Assimilation Office 2008a)

ERA-Interim
LH, SH

1979 - ongoing, monthly mean, 79 km
global surface
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TABLE 3. Global annual land average energy budget from the NASA reanalyses (Wm−2), estimated over an

area of 130.2 million km2.

960

961

SWd SWu LWd LWu Rnet LH SH

MERRA-2 204.6 40.7 312.6 385.5 91.0 47.8 42.2

MERRA-Land as for MERRA 384.1 95.1 42.5 52.1

MERRA 206.5 40.9 313.7 386.7 92.6 50.4 41.2
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June R2
anom(LH, SM)

FIG. 2. R2
anom between monthly anomalies of LH and rootzone soil moisture (SM) in MERRA-2 for JJA. No

value is plotted where the correlation is negative.
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a) R2
anom(PRECTOT, T 2m

max)

b) R2
anom(PRECTOTCORR, T 2m

max)

c) �R2
anom

FIG. 3. JJA sensitivity of the monthly mean T 2m
max to precipitation in MERRA-2: R2

anom between the monthly

mean T 2m
max anomalies, and the two-monthly (current + previous months) precipitation anomalies, for (a) the

model-generated precipitation (PRECTOT), and (b) the observation-corrected precipitation (PRECTOTCORR),

together with their difference (c) ∆R2
anom = R2

anom(PRECTOTCORR, T 2m
max) - R2

anom(PRECTOT, T 2m
max). Values are

plotted only where the correlation between T 2m
max and precipitation is negative.
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a) mean LH [Wm�2] b) mean SH [Wm�2]

FIG. 9. Bar plot of the mean annual (a) LH and (b) SH, across the 20 Fluxnet site locations, from MERRA-2

(M-2), MERRA-Land (M-L), MERRA (M), Fluxnet (FlN), MTE, and GLEAM (GLM; LH only), calculated

using each data set at its native resolution (and screened temporally for Fluxnet availability). For the global data

sets, circles are plotted for the global land annual mean (taken from Figure 1).
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a) mean Ranom LH b) mean Ranom SH c) mean Ranom LH+SH

FIG. 10. Bar plot of the Ranom over JJA averaged across the 20 Fluxnet site locations, for (a) LH, (b) SH,

and (c) LH+SH, between each pair of the reanalyses (MERRA-2 (M-2), MERRA-Land (M-L), MERRA (M),

and ERA-I (E-I)) and the reference data (Fluxnet (FlN), MTE, and GLEAM (GLM)). The Ranom vs. the Fluxnet

reference data use the reanalysis output at their reported spatial resolution (and screened temporally for Fluxnet

availability), while the Ranom vs. GLEAM and MTE use reanalyses and reference data regridded to 1◦. For

GLEAM and MTE, circles are plotted for the global mean JJA Ranom (averaged over subplots of Figure 8).

1047

1048

1049

1050

1051

1052

60



a) Ranom (MERRA-2,CRU) T 2m
max

b) Ranom (MERRA-2,CRU) - Ranom (MERRA,CRU) T 2m
max

FIG. 11. The (a) MERRA-2 Ranom vs. CRU monthly mean T 2m
max, and (b) the improvement in the T 2m

max Ranom

from MERRA to MERRA-2, both over JJA. Statistics span 1980-2015, and white plotted over land indicates

insufficient CRU data.
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